MTH 203: Groups and Symmetry Homework VI

Problems for practice

1. Use the Second isomorphism theorem to show that given positive integers m, n

$$
m n=\operatorname{gcd}(m, n) \operatorname{lcm}(m, n)
$$

2. Establish the assertion in 3.4 (vii) of the Lesson Plan.
3. Establish the assertions in 4.1 (iii) - (v) of the Lesson Plan.
4. Show that up to isomorphism and rearrangement the direct product of k groups G_{i}, for $1 \leq i \leq k$, is unique.
5. Establish the assertions in 4.2 (viii) of the Lesson Plan.
6. Show that every proper subgroup of a group of order 8 is abelian.
7. Let a finite group G be a direct product of the groups $\mathbb{Z}_{n_{i}}$, for $1 \leq i \leq k$. Show that if $g=\left(g_{1}, g_{2}, \ldots, g_{k}\right) \in G$, then

$$
o(g)=\operatorname{lcm}\left(o\left(g_{1}\right), o\left(g_{2}\right), \ldots o\left(g_{k}\right)\right) .
$$

[Hint: $o(g)$ is the smallest integer r such that $g_{i}^{r}=1$, for all i.]
8. Given a prime p and an integer $k \geq 1$, show that there exists an abelian group of order p^{k} in which every nontrivial element is of order p.
9. Up to isomorphism, classify all abelian groups of orders 100 and 124.
10. Given a prime p and an integer $k \geq 2$, classify all abelian groups of order p^{k},

